The Group

Solid state nuclear magnetic resonance (NMR) is exquisitely suited to probe atomic level structural detail of biomolecules not amendable to x-ray crystallography. However, the small nuclear magnetic moments that yield narrow resonances also result in very low inherent sensitivity in NMR. Dynamic Nuclear Polarization (DNP) is a powerful combined electron paramagnetic resonance (EPR) and NMR technique that transfers the strong polarization from unpaired electron spins to nuclear spins to boost NMR sensitivity. In our DNP experiments, we endeavor to employ frequency agile gyrotrons, and extreme cryogenic sample cooling to increase the sensitivity of solid state NMR experiments up to a factor of 20,000. This tremendous gain in sensitivity will result in acquiring data 400 million times faster than conventional NMR experiments and will have a profound impact on magnetic resonance spectroscopy and structural biology. The drastic gain in sensitivity will permit biomolecular structure determination in complex heterogeneous systems in vitro with less than a milligram of sample and in hours of experimental time, or directly in vivo in a cellular context without protein purification.

JavaScript has been disabled in your browser